
ISRAEL JOURNAL OF MATHEMATICS ST (1994), 325-335 

AFFINE ANALOG OF 
THE PROPER BASE CHANGE THEOREM 

BY 

O F E R  G A B B E R  

I.H.E.S, 35 route de Chartres, 91,~0 Bures-sur-Yvette, France 

ABSTRACT 

We prove a rigidity property for the ~tale cohomology with torsion 

coefficients of alpine Hensel pairs. 

0. I n t r o d u c t i o n  

Recall that if I is an ideal in a commutative ring A then the pair (A, I) is called 

henselian iff the following equivalent conditions are satisfied (see [8], chap. XI, 

§2): 
Ca) I c Rad(A) (the Jacobson radical of A), and for every two relatively prime 

monic polynomials ~, h E A[t] (.4 = A/I) and monic lifting f E A[t] of ~h, 

there exist monic liftings g, h E A[t] s.t. f = gh. 
(b) If B is a finite A-algebra, then Idem(B) -% Idem(B/IB) (where Idem(B) = 

the Boolean algebra of idempotent elements of B). 

(c) If A' is an ~tale A-algebra and a E HOmAalg(A',A/I), then ~1~ E 

HomA alg(A', A) which lifts a. 

The henselization of any pair (A, I) is (cf. ibid.) the pair Cover (A, I))  (.4, .T) ~f  

( l i m  A', l im_ger (~  )), where jV" is the filtered category of pairs (A', a) as in (c).* 
~ N  --*N 

* A/" is filtered (in the sense of [2, I, 2.7]) since, in the category of A-algebras, finite 
direct limits preserve ~taleness. 
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THEOREM 1: If  (A, I) is a henselian pair, X = Spec(A), Xo = Spec(A/I), and 

i~t : X0 Ct --~ Xet the morphism of 6tale sites, then for every torsion abelian sheM 

F on X~t and Vq>0, the restriction map 

Hq(X¢t, F) ~ Hq( Xo ~t, i*tF) 

is an isomorphism. 

This theorem is conjectured in ([2], XII, Remarks 6.13). We shall prove it by 

induction on q, and reduce by standard arguments to Lemma 1 below [which is 

essentially a special case of Theorem 1]. Lemma 1 is proved by induction on q 

using Quillen induction, the case q = 1 being true by Remark 1 below. Unlike 

the case of henselian local rings, the statement does not hold for non-torsion 

coefficients (take (A, I) = the henselization of (C[x, y], (y2 _ x 2 _ x3)), q = 1, F = 

Z.) The result is used for other comparison theorems, see Fujiwara [4]. 

1. C o n s t a n t  p o s s i b l y  n o n - a b e l i a n  c o e f f i c i e n t s  (q = O, 1) 

For a set S, let S denote the constant sheaf defined by S on a site under consid- 

eration. Suppose (A, I) is a henselian pair. 

Remark 1.1: (i) If F is a constant sheaf of sets on Xet, then F ( X , F ) ~  

r(Xo, i*F). 
(ii) If G is a finite group, then /:/elf (X, G)=~/:/lt (Xo, G). 

Proof: (i) follows from condition (b) for B = A which means that  any closed 

and open subset U C Xo extends uniquely to a closed and open subset of X. 

(ii) is the conclusion for isomorphism classes of 

LEMMA 1.1: The functor 

(G-torsors on Spec(A)et)-~(G-torsors  on Spec(A/I)~t) 

is an equivalence of categories. 

Proof: T is fully faithful: If a, • are G-torsors on Spec(A)~t, then I som(a ,  8) 

is represented by a finite 6tale morphism Spec(A') --* Spec(A), and we apply (c). 

[One can also use (b) for the idempotents defining the graph of an isomorphism.] 

T is essentially surjective: This is shown using the methods of [3].* 

* A similar argument shows that (finite ~tale X schemes) ~ (finite ~tale Xo schemes) 
is an equivalence of categories, which answers a question of (EGA IV, 18.5.16) in 
the afline case. 
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Definition: If P is a finitely generated projective module over a (commutative) 

ring K,  then by an n-rigidification (n E N) of P we mean a pair (p, (), p a 

projector on K n, (: P-Y~Im(p). 

If Z is a scheme and F is a G-torsor on Z~t, then F is the sheaf of sections 

of a finite ~tale Z scheme Z ~. If Z is affine, then O(Z I) has an n-rigidification 

as an O(Z)-module for all n >> 0. Consider the functor F : (Sch/Z) --~ (sets), 

associating to every Z-scheme W the set of isomorphism classes of n-rigidified 

G-torsors on Wet. 

LEMMA o~ (compare [3, lemma in §III2]): (i) F is represented by an affine Z 

scheme • of finite presentation. 

(ii) • --+ Z is smooth. (In fact, ¢ --+(scheme of projectors on O '~) is smooth.) 

Proof: For (i), one considers relative representability of F -~ (projectors on On). 

(If W is a Z scheme and p is a projector on O~v, then the problem of endowing 

Ira(p) with an algebra structure and G action is represented by an affine f.p. 

morphism W ~ -+ W. The 6taleness condition on the resulting Ow,-algebra is 

represented by an affine open immersion fl ¢-~ W' (defined locally by inverting a 

discriminant); and on l) the condition that  the G action gives a torsor is closed 

and open.) 

For (ii), it is enough (by the definition [6], 17.3) to check that F is formally 

smooth, i.e., that F(B) ~ F(B/I)  whenever Spec(B) is a Z scheme and I C B 

is a nilpotent ideal. 

Indeed, using [6] (18.1.2) a G-torsor on Spec(B/I) lifts to a G-torsor on 

Spec(B), and one checks (using only I C Rad(B)) that  any rigidification lifts. 

To show that T is essentially surjective, we notice that  any G torsor on 

Spec(A/I) comes for n >> 0 from an element of @(A/I), and @(A) ~ @(A/I) by 

[3, theorem on page 568]. | 

Remark 1.2: If B is a finite A-algebra, then (B, IB) is a henselian pair (check 

(b)) [8, IX, Prop. 2(i)], and hence Lemma 1.1 holds for (Spec(B), Spec(B/I)). 

2. R e d u c t i o n  o f  T h e o r e m  1 t o  L e m m a  1 

We first recall some properties of henselization. Let P be the category of pairs 

and Ph ~-*j P the strictly full subcategory of henselian pairs. One checks, e.g., 

using condition (a), that  a filtered direct limit of henselian pairs is henselian 

[8, XI, prop. 2(ii)], so it serves as a direct limit in Ph (as well as in P).  
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LEMMA 2.1: I f  (A , I )  = li__.m(Ai, Ii) is a filtered direct limit (in P),  then the 

henselizations satisfy li_m(,4i, Ii) ~~(A, I). 

Proof: By [8, XI, def. 4, th. 2], the henselization functor sends P into Ph and 

it is a left adjoint to j .  As any left adjoint, it preserves direct limits. (Lemma 

2.1 could also be shown from the construction and results of [6]IV.) 

LEMMA 2.2: (cf. [8, p. 125]) I r A  is a commutative noetherian ring and I C A 

an ideal, then the henselization .4 of A w.r.t. I is noetherian. 

Proof'. Consider a (A' ,a)  EAf .  Since A ~ is a formally 6tale A-algebra (in 

the sense of [6, IV, 17.1]), we have that (Vn E N +) a lifts uniquely to an E 

HOmA alg(A', Ali 's) ,  and that the composition 

A' -----, A / I  n , A' /ker (a)  n 
~n t~ 

is the canonical projection. This and an(ker(a) n) = 0 give that t,~ is an iso- 
^ ^ 

morphism. So lim tn : A-~A ~. Consider the flat composed homomorphism 

A' --+ .4'-=,.4. Taking the direct limit over A: gives a homomorphism A ~ A, 

which is still flat by [6, 0i, (6.2.3)]. Any maximal ideal m C A is contracted from 

a maximal ideal of A since m D Rad(A) D i and A / l C - , A / i - ~ A / I .  Hence qo is 

faithfully flat. But .4 is noetherian, so by [6, 0i, (6.5.2)] A is noetherian. 

Proof of Theorem 1 by Induction: Let q >_ 0 be given and assume that p F  1 is 

bijective for every F in the category C of torsion abelian sheaves on Xet. 

CLAIM 1: VF E Ob(C) ,p  F is injective. 

Proof  If q = 0, the injectivity follows from the fact that X is the only open 

neighbourhood of Xo in X, which is equivalent to I C Rad(A). We now assume 

q > 0. Embed F in an injective object G of the category C. Then we get a 

morphism of exact sequences 

• .. -+ H q - I ( X , G / F )  -----+ H q ( Z , F )  ~ H q ( X , G )  - + . . .  

I ,G/F 

• ..--+ Hq- I (Xo ,  G / F )  , Hq(Xo, F)  ---,  Hq(Xo, G) ---+... 

We claim that Hq(Xet,  G) = O. Indeed Vn E N+,  the sheaf AnnG(n) = 

Homz(Z/ (n ) ,  G) is an injective Z/(n)  Module, so Hq(x, AnnG(n)) = 0 (notice 
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that cohomology is independent of the base Ring ([2], V, cot. 3.5)), and G = 

limAnnG(n) (over N+ ordered by divisibility) implies by ([2], VII, prop. 3.3) 

that Hq (Xet , G) ~'- lira H q (Xct, Anna (n)). 

Now from (*) and the induction hypothesis one deduces the injectivity of pF. 

F is bijective VF E Ob(C). CLAIM 2: pq 

Proof." (i) By ([2], IX, cor. 2.7.2) F is a filtered direct limit of constructible 

abelian sheaves Fro. One can replace the Fin's by constructible torsion sheaves, 

because Vm the canonical homomorphism Fm --+ F factorizes through F~/nF~ 

for some n > 0. By ([2], VII, prop. 3.3) lim  Hq(Xot, Fm)~Hq(Xot,  F), and 

similarly on Xo. Thus Claim 2 is reduced to case F is constructible. 

(ii)* Using (2.1) we express (A,I)  (-:~(,4, I)) as lirn(,4~, L ) ,  where the 

Am are the finitely generated subrings of A and (.4~, I~) is the henselization of 

(Am, I N A~). X = Spec(A) is the inverse limit of the X~ := Spec(,4~), and by 

([2], IX, cot. 2.7.4) F is isomorphic to the pull-back of a constructible torsion 

sheaf Fm on Xm et for some a. We may assume that a is an initial object of the 

index category J.  (Replace J by a \ J.)  

Then ifY~ 6 0 b J  we let FZ denote the pull-back of Fm by X~ -~ Xm, we have, 

by ([2], VII, Cor. 5.8), that 

lim Hq(xz ~t, FZ) -7+ Hq(x, F). 

(Similarly for Xo.) This enables one to reduce Claim 2 to the case where, in 

addition, A is noetherian. 

(iii) If F embeds in a torsion sheaf G, then by applying the five lemma to 

the morphism of exact sequences 

• .. ~ Hq- I (X ,  G /F)  , Hq(x ,  F) ----* Hq(x ,  G) ) Ha(X, G /F)  
6 

I i I I 
• " ~ Hq-I(Xo,  G / F ) - - ~ H q ( X o ,  F) ~ Hq(Xo, G) , Hq(Xo, G / F )  

and using Claim 1 and the induction hypothesis, we reduce Claim 2 to showing 

the bijectivity of pqG. 

(iv) Vx • Spec(A), let x also denote the scheme Spec(k(x)). Choose 

an algebraic closure k(x) of k(x), and let • = Spec(k(x)). We have a morphism 

* Cf. the proof of ([2], XII, lemma 8.1). 
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~ X.i~ factorizes through the normalization Z of {X} (with the integral scheme 
is 

structure) in k(~): 

x , Z - - - ~ X  j 

(j is isomorphic to the inclusion of the generic point). 

(v) Using the fact that  IXI is noetherian and F is constructible, we can find 

finitely many points x~ E X (1 _< (~ _< k) s.t. F ---* H~i~.i*~F is injective, where 

(V~)i~ - i ~  ([2], IX, prop. 2.14(ii)). Then (iii) shows that  Claim 2 is reduced 

to 

F is CLAIM 3: I[X E X and M is a torsion abelian group and F = i~.M,  then pq 

bijective. 

Proof of Claim 3: We recall that if Y is a normal integral scheme with generic 

point y ~ Y, then the strictly local rings of Y are domains ([8], VIII, th. 3(2)), 

and this implies ([2], IX, lemma 2.14.1) ¢ ,S~-S for any set S. In particular, 

with the notations of (iv), we get j . M  = M so F = r . j . M  = ~r.M. Define 

Zo = Z ×x  Xo and let ro:Zo ~ Xo and ~ : Zo ~ Z be the projections. Since 

is an integral morphism, we have ([2], VIII, cor. 5.6) RqTr. = 0 for q > 0 and 7r. 

commutes with base changes, so i*~r.M-=*~r0fi*M and 

Hq(Xo et, i*F)--=-*Hqet(Xo, ~ro, M)--=-*Helt (Zo, M). 

So Claim 3 is equivalent to 

(**) Hqct(Z, M) -7 Hqt(Zo, M). 
P 

If q = 0 then by (b) (extended to integral algebras by a limit argument) Z0 

is connected, so p is M--* M; therefore (**) holds. Suppose q > 0. Then by 
id 

j . M  = M and RPj. = 0 for p > 0 (as j ,  is exact), we get 

Hq~t(Z, M)--=-*Heqt ({~}, M) = 0, 

so (**) reduces to a case of 

LEMMA 1: / [  A is a normal domain having an algebraically closed tield of frac- 

tions, then for every dosed subscheme Z C Spec(A) and a torsion abelian group 

M we have 

Hgt(Z, M) -- 0 Vq>0 .  
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(For q --- 1 we can replace "torsion abelian group" by "locally finite group" .) 

3. P r o o f  of  L e m m a  1 

Let Y be the spectrum of Idem(Z), as a topological space. We have a continuous 

map [Z[ 7 Y ,  defined by f - I (Ue)  = Ue Ve E Idem(Z). 

The fibers of f are the connected components of Z (this is a general fact for 

topological spaces on which H ° commutes with filtered lim, e.g., coherent spaces 

(in the sense of toposes [2], VI) or compact Hausdorff spaces). 

We claim that  for any abelian sheaf F on Zet, we have 

(3.1) S q ( Z e t , F )  ' H Uq( f - l (y )~ t ,  F) is injective. 
yEY 

Proof of 3.1: We first remark that each f-1 (y) has a unique closed subscheme 

structure, and furthermore it is the lim of its closed and open neighbourhoods 
+.- 

Ui. Hence by ([2], VII, cor. 5.8) 

Hq( f - l ( y ) e t ,  F)( - l imUl(Ui e t ,  F). 
i 

Hence if ~ E Ker(#) then V u ~ vanishes on some closed and open neighbourhood 

Uy of f - l ( y ) .  Finitely many such Ui = Uu, (1 _< i _< u) suffice to cover Z. Then 

Z is the disjoint union of the open subschemes U~ = Ui - Uj<i Uj, so from 

~ [ U ~ = 0 V i w e g e t ~ = 0 .  

(The proof can be reformulated using the Leray spectral sequence for the mor- 

phism of sites Z~t -~ Y.) 

LEMMA 2: I f  Z = V( I )  of Lemma 1 is connected, then 

(A', I ' )  de__f ((1 + I ) - I A ,  (1 + i ) - 1 i )  

is a henselian pair. 

Proof: We check condition (a). The localization by 1 + I ensures 11 C Rad(X).  

Now if f , ~ , h  are as in the statement of (a), then as A J is also a normal do- 

main with an algebraically closed field of fractions, f factorizes as H2= 1 (t - As) 

(As E A'). 

So if n > 0 then ~(A1)h(AI) = f(A1) = 0, but .0(A1),4 + h(A1)A = (1), so 

locally one of g(~l), h(A1) is a unit and the other is zero. By connectedness of 
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Spec(A/I )  this holds globally. Continuing, one obtains that  for some parti t ion 

{ 1 , 2 , . . . , N }  = ¢ 1 I I ¢ 2  we have 

= n n 
aE¢1 aE¢2 

Define g, h by analogous formulas without bar. 

Proof of Lemma 1 for q = 1: (3.1) is used to reduce to the case that  A / I  is 

connected, then Lemma 2 reduces to the case that  (A, I )  is henselian, in which 

we use Remark l(ii) and H~t(Spec(A), M) = 0. 

Proof of Lemma 1 t'or q > 1: We assume by induction that  Lemma 1 holds for 

q - 1, and we shall prove it for q. 

Suppose ~ E Hqt(Z, M).  Every 6tale morphism V ~ Z extends locally to a 
e 

separated ~tale morphism V I --~ Spec(A). We recall 
e I 

LEMMA 3: (cf. [6], IV,  prop. 18.10.8). I f  V ~ Z is a separated dtale morphism 
I 

with Z integral normal with generic point ~, then V is isomorphic as a Z-scheme 

to a disjoint union of open subschemes of the normalizations of Z in finite field 

extensions of k(~). 

(This follows from "Zariski's main theorem" and the fact that  Oy is integrally 

closed in Ov ®Oz k(~?).) 

In our case Lemma 3 implies that  e' is a local homeomorphism, so e is a local 

homeomorphism, and we can think of V as a Zariski sheaf on Z. More precisely, 

the ~tale site of Z is equivalent (as a category with topology) to the Zariski topos 

of Z. From this one shows that  the Zariski and ~tale sites of Z give equivalent 

toposes, so Hair(Z, M) _% Hqt(z,  M). In particular, ~ is trivial locally for the 

Zariski topology on Z, so the subset 

S = {s E A [ ~Iz s = O} [where Z s = Z - Y ( s ) ]  

satisfies A = A .  S. We want to show that  S is an ideal. (This will give S = A, 

so 1 E S, i.e., ~ = 0.) As S is easily seen to be closed under multiplication by 

elements of A, it remains to show that  if s, t E S then s + t E S. 

We may assume s + t # 0, so replacing A by A[1/(s + t)] we reduce to show 

that  if s + t E A* and ~lz. = 0 and ~lz~ = 0, then ~ = 0. Notice Z = Zs U Zt, so 

we have a Mayer-Vietoris exact sequence (cf. [7], III,  2.24) 

(3 .2)  

HetHet(Zt, M) ~ - . .  ...___~ Hqtl (zsMZt,M)__~Hqt(Z,M)___~ Hq t (Z~ ,M)G q q 
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which gives ~ E Im(~). But the term Hq-I(Z, n Zt, M) vanishes by applying 

(if s, t ~ 0) the induction hypothesis of Lemma 1 to the ring A[1/st] and the 

pull-back of Z to its spectrum. 

Query: Does Lemma I hold for any affine scheme Z s.t. any monic f E O(Z)[t] 
of deg > 0 has a root? 

Connectivity properties: Let A be an absolutely integrally closed domain, Z1 

and Z2 closed subsets of Spec(A), Z = Z1 U Z2. The Z/n-torsors on Z which are 

trivial on both Z1 and Z2 are classified by the cokernel of the restriction map 

r: H°(Z1, Z/n) ~ H°(Z2, Z/n) , H°(Z1 N Z2, Z/n), 

so by Lemma 1 r is surjective (for n ¢ 0). This can fail for coefficients Z or Q. 

In particular one gets the corollary that  the intersection of two connected closed 

subsets of Spec(A) is connected or empty (which occurred in more special cases 

in Artin [1, §1]). 

4. R e m a r k s  on non -abe l i an  c a s e s  

4.1 A sheaf of groups G on a site S is called ind-finite iff Vn E N, G n is equal to its 

subsheaf (Gn)f consisting of the n-tuples of local sections of G which generate 

locally a finite subgroup of G(U).* One checks that  the formation of (G'~)! 

commutes with applying ¢* for a morphism of topoii. Hence if (P~ --+ S) is a 

conservative family of points, then G is ind-finite iff all the stalks Gp~ are locally 

finite. 

If X is a scheme and C --* Xet is a stack (champ in the sense of [5], ch. II), 
7r  

then C is called ind-finite ([5], ch. VII, 2.2.1) iff for every local section a E Cu 

(= the category r - l ( u ) ) ,  the sheaf Au t ( a )  on Uet is ind-finite. 

4.2 Let (X, X0) be an affine Hensel pair. 

Remark 2: (i) po F is bijective for any sheaf of sets F on Xet. (This strengthens 

(c).) 
(ii) pF is bijective for any ind-finite sheaf of groups F on Xet. 

Proof." (i) Use condition (b) above and the implication (b) =*, (a) in 

([2], XI I ,  prop. 6.5 (i)). 

* If S is topologically generated by its quasi-compact objects, the definition oI 
([2], IX, 1.5) can be used. 
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(ii) Use Lemma 1.1 applied to finite A-algebras and the implication (b) ~ (a) 

in ([2], XII, prop. 6.5(ii)). 

Remark 2 can be strengthened to 

THEOREM 1': If C is an ind-finite stack o n  X e t  , then the functor from cartesian 

sections of C to cartesian sections of i*C is an equivalence of categories. 

Proof'. This follows from Lemma 1.1 for finite A-algebras, Remark 2(i), and the 

following: 

P R O P O S I T I O N  1: H Xo --* X is a closed immersion of coherent schemes, then 

conditions (B) and (C) of ([5], VII, §2.2.11) imply condition (E) of (ibid.). 

Proposition 1 is proved in (ibid.) in the noetherian case. It holds more gen- 

erally for every morphism of coherent algebraic spaces, and can be proved by 

extending to gerbes the techniques of ([2], IX, XII) for sheaves of groups. 

Remark 3: (cf. [2], XII, 6.5(i)). The functor T of Theorem 1' is fully faithful 

for any stack C ~ Xet; this follows by applying Remark 2(0 to the sheaves 

Horn(a ,  r) ,  where a, r are cartesian sections of C. Specializing to the case 

C = (the stack of F-torsors), F being any sheaf of groups on Xet, this gives 

that pF is injective. 

5. Proper  schemes  

By the proper base change theorem ([2], XII, cor. 5.5), if O is a henselian local 

ring with residue field k and Y is a proper O-scheme, then (Y, Y ® k) satisfies 

the property of Theorem 1. Combining Theorems 1 and 1' with the proper base 

change theorem, we obtain: 

COROLLARY 1: If (A, I) is a henselian pair, Y ~ Spec(A) a proper morphism, 

and Yo = V(IOy) ,  then (Y, Yo) satisfies the property of Theorems 1 and 1'. 

Proof of Corollary 1: 

gram 

(i) For abelian cohomology: Consider the cartesian dia- 

Yo Y 
i 

Spec( A / I) Spec(A). 
J 
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If F is a torsion abelian sheaf on Yet and Fo = i 'F ,  then we have a morphism 

between the Leray spectral sequences: 

E pq = HP(SpecA, RqTr.F) ~ HP+q(Yet, F) 

1 l 
q = HP(SpecA/I, Rq o. Fo) HP+ (goet, Fo). 

By proper base change ([2], XII, 5.1) j*Rqrr, F-~R%ro,  Fo, and R%r,F is a 

torsion sheaf since RqTr, commutes with filtered direct limits (using [2], VII, 3.3). 
So by Theorem 1, E~q-T-~IE~q, and hence the morphism of abutements is an 

isomorphism. 

(ii) For non-abelian cohomology: We use the operations f ,  and f* on stacks 

([5], ch. II, 3) relative to a morphism f of toposes. If C ---, S is a functor and 
"K 

s E Ob(S), Cs denotes the category 7r-l(s). If C ~ Yet is an ind-finite stack 

then the functor Cy -~ (i*C)y o which is to be shown an equivalence of categories 

identified with the composition 

(Tr, C)x ' ,,(j* r.C)Xo -7----*(~ro.i*C)xo. 
"restriction ox o 

The first arrow is an equivalence of categories by Theorem 1', and the second 

arrow is an equivalence since the base change morphism b : j * r .C  --~ r0.i*C is 
an equivalence (by proper base change for stacks ([5], VII, 2.2.2), in which the 

noetherianity hypothesis can be omitted in view of Proposition 1). 
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