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ABSTRACT
We prove a rigidity property for the étale cohomology with torsion

coefficients of affine Hensel pairs.

0. Introduction

Recall that if I is an ideal in a commutative ring A then the pair (A, I') is called
henselian iff the following equivalent conditions are satisfied (see [8], chap. XI,
§2):

(a) I c Rad(A) (the Jacobson radical of A), and for every two relatively prime
monic polynomials g, h € Aft] (A = A/I) and monic lifting f € A[t] of gh,
there exist monic liftings g, h € A[t} s.t. f = gh.

(b) If B is a finite A-algebra, then Idem(B) = Idem(B/IB) (where Idem(B) =
the Boolean algebra of idempotent elements of B).

(c) If A’ is an étale A-algebra and ¢ € Homy ag(A’, A/I), then 3,6 €
Hom 4 ag(A’, A) which lifts o.

The henselization of any pair (A, I) is (cf. ibid.) the pair (over (4, 1)) (4, 1) &

(IEIINA’, lEnNKer(a)), where V is the filtered category of pairs (A’,0) as in (c).*

* N is filtered (in the sense of [2, I, 2.7]) since, in the category of A-algebras, finite
direct limits preserve étaleness.
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THEOREM 1: If (A, I) is a henselian pair, X = Spec(A), Xo = Spec(A/I), and
fet 1 Xo et — Xet the morphism of étale sites, then for every torsion abelian sheaf
F on Xy and Vg0, the restriction map

H*(Xet, F) — HY(Xo ot, 5 F)
Pq

is an isomorphism.

This theorem is conjectured in ([2], XII, Remarks 6.13). We shall prove it by
induction on ¢, and reduce by standard arguments to Lemma 1 below {which is
essentially a special case of Theorem 1]. Lemma 1 is proved by induction on ¢
using Quillen induction, the case ¢ = 1 being true by Remark 1 below. Unlike
the case of henselian local rings, the statement does not hold for non-torsion
coefficients (take (A4, I) = the henselization of (C{z, y], (y> —2* —23)),q=1,F =
Z.) The result is used for other comparison theorems, see Fujiwara [4].

1. Constant possibly non-abelian coefficients (¢ =0,1)

For a set S, let S denote the constant sheaf defined by S on a site under consid-
eration. Suppose (A, I) is a henselian pair.
Remark 1.1: (i) If F is a constant sheaf of sets on X, then I'(X,F)>
['(Xo,*F).

(ii) If G is a finite group, then HL (X, G)>HL (X0, G).
Proof: (i) follows from condition (b) for B = A which means that any closed

and open subset U C Xo extends uniquely to a closed and open subset of X.
(ii) is the conclusion for isomorphism classes of

LeEmMA 1.1: The functor
(G-torsors on Spec(A)et) —}—»(G-torsors on Spec(A/I)et)
is an equivalence of categories.

Proof: T is fully faithful: If a, B are G-torsors on Spec(A)et, then Isom(a, 5)

is represented by a finite étale morphism Spec(A’) — Spec(A), and we apply (c).

[One can also use (b) for the idempotents defining the graph of an isomorphism.}
T is essentially surjective: This is shown using the methods of {3].*

* A similar argument shows that (finite étale X schemes) — (finite étale Xo schemes)
is an equivalence of categories, which answers a question of (EGA 1V, 18.5.16) in
the affine case.
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Definition: If P is a finitely generated projective module over a (commutative)
ring K, then by an n-rigidification (n € N) of P we mean a pair (p,{), p a
projector on K™, {: P=-Im(p).

If Z is a scheme and F is a G-torsor on Zg, then F is the sheaf of sections
of a finite étale Z scheme Z’. If Z is affine, then O(Z’) has an n-rigidification
as an O(Z)-module for all n >> 0. Consider the functor F : (Sch/Z) — (sets),
associating to every Z-scheme W the set of isomorphism classes of n-rigidified
G-torsors on Wy,.

LEMMA a (compare [3, lemma in §II12]): (i) F is represented by an affine Z
scheme ® of finite presentation.
(i1) ® — Z is smooth. (In fact, ® —(scheme of projectors on O™) is smooth.)

Proof: For (i), one considers relative representability of F — (projectors on O™).
(If W is a Z scheme and p is a projector on Op;, then the problem of endowing
Im(p) with an algebra structure and G action is represented by an affine f.p.
morphism W’ — W. The étaleness condition on the resulting Oy -algebra is
represented by an affine open immersion ( < W’ (defined locally by inverting a
discriminant); and on {2 the condition that the G action gives a torsor is closed
and open.)

For (ii), it is enough (by the definition [6], 17.3) to check that F is formally
smooth, i.e., that F(B) - F(B/I) whenever Spec(B) is a Z scheme and I C B
is a nilpotent ideal.

Indeed, using [6] (18.1.2) a G-torsor on Spec(B/I) lifts to a G-torsor on
Spec(B), and one checks (using only I C Rad(B)) that any rigidification lifts.

To show that T is essentially surjective, we notice that any G torsor on
Spec(A/I) comes for n > 0 from an element of ®(A/I), and ®(A) —» &(A/I) by
[3, theorem on page 568). |

Remark 1.2: If B is a finite A-algebra, then (B, IB) is a henselian pair (check
(b)) [8, IX, Prop. 2(i)], and hence Lemma 1.1 holds for (Spec(B), Spec(B/I)).

2. Reduction of Theorem 1 to Lemma 1

We first recall some properties of henselization. Let P be the category of pairs
and P, —; P the strictly full subcategory of henselian pairs. One checks, e.g.,
using condition (a), that a filtered direct limit of henselian pairs is henselian
[8, X1, prop. 2(ii})], so it serves as a direct limit in P;, (as well as in P).
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LEMMA 2.1: If (4,I) = lim(A,, ;) is a filtered direct limit (in P), then the
henselizations satisfy im(A;, I;) —(A, I).
Proof: By [8, XI, def. 4, th. 2], the henselization functor sends P into Pj, and

it is a left adjoint to j. As any left adjoint, it preserves direct limits. (Lemma

2.1 could also be shown from the construction and results of [6]IV.)

LEMMA 2.2: (cf. [8, p. 125]) If A is a commutative noetherian ring and I C A
an ideal, then the henselization A of A w.r.t. I is noetherian.

Proof: Consider a (A',0) € N. Since A’ is a formally étale A-algebra (in
the sense of [6, IV, 17.1]), we have that (Vn € N*) ¢ lifts uniquely to o, €
Homy ag(A’, A/I™), and that the composition

A — AT — A’/ ker(o)"

is the canonical projection. This and o, (ker(s)™) = 0 give that ¢, is an iso-
morphism. So l‘in t, : ASA’. Consider the flat composed homomorphism
A' — A'>A. Taking the direct limit over A" gives a homomorphism A % A,
which is still flat by [6, Oy, (6.2.3)]. Any maximal ideal m C A is contracted from
a maximal ideal of A since m D> Rad(A) D I and A/I=A/I5A/I. Hence o is
faithfully flat. But A is noetherian, so by [6, 01, (6.5.2)] A is noetherian.

Proof of Theorem 1 by Induction: Let ¢ 2 0 be given and assume that qu_l is
bijective for every F in the category C of torsion abelian sheaves on Xe4.

CLAIM 1: VF € Ob(C), pf is injective.

Proof: If g = 0, the injectivity follows from the fact that X is the only open
neighbourhood of Xo in X, which is equivalent to I C Rad(A). We now assume
g > 0. Embed F in an injective object G of the category C. Then we get a

morphism of exact sequences
«oo— H"YX G/F) — HYX,F) — HYX,G)— -
G/F
(+) 10§44 | |
«eo— HYYXo,G/F) — HIY(Xo, F) — HIY(Xo,G)— ---

We claim that H9(X.,G) = 0. Indeed Vn € N, the sheaf Anng(n) =
Homg(Z/(n), G) is an injective Z/(n) Module, so H¥(X, Anng(n)) = 0 (notice
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that cohomology is independent of the base Ring ([2], V, cor. 3.5)), and G =
lim Anng(n) (over N, ordered by divisibility) implies by ([2], VII, prop. 3.3)
that H9(Xey, G)<lim H9(Xe, Anng(n)).

Now from (%) and the induction hypothesis one deduces the injectivity of pf;? .
CrAM 2: pf is bijective VF € Ob(C).

Proof: (i) By ([2], IX, cor. 2.7.2) F is a filtered direct limit of constructible
abelian sheaves F,,. One can replace the F,’s by constructible torsion sheaves,
because Y, the canonical homomorphism F, — F factorizes through F,/nF,
for some n > 0. By ([2], VII, prop. 3.3) lim, H9(Xet, Fo)>HY X, F), and
similarly on Xg. Thus Claim 2 is reduced to :ase F is constructible.
(ii)* Using (2.1) we express (4,1) (=(4,1)) as lgn(ﬁa,fa), where the

A, are the finitely generated subrings of A and (Aq, I,) is the henselization of
(Aa, IN A,). X = Spec(A) is the inverse limit of the X, := Spec(A,), and by
([2], IX, cor. 2.7.4) F is isomorphic to the pull-back of a constructible torsion
sheaf F,, on X, « for some a. We may assume that « is an initial object of the
index category J. (Replace J by a™~ J.)

Then if V3 € ObJ we let F3 denote the pull-back of F,, by Xz — X,, we have,
by (2], VII, Cor. 5.8), that

lim H¥(Xp et, Fp) S HYX,F).
B
(Similarly for X,.) This enables one to reduce Claim 2 to the case where, in
addition, A is noetherian.
(iii) If F embeds in a torsion sheaf G, then by applying the five lemma to
the morphism of exact sequences

= HI7Y(X,G/F) — HY(X,F) — HY(X,G) — H(X,G/F)

!

- = H™)(Xo, G/F) — HY(Xo, F) — H1(Xo,G) — H(Xo,G/F)

and using Claim 1 and the induction hypothesis, we reduce Claim 2 to showing
the bijectivity of qu.
(iv) Vz € Spec(A), let = also denote the scheme Spec(k(x)). Choose

an algebraic closure k(z) of k(z), and let Z = Spec(k(z)). We have a morphism

* Cf. the proof of ([2], XII, lemma 8.1).
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T — X.iz factorizes through the normalization Z of _{_H (with the integral scheme
iz
structure) in k(Z):
iz
3
T—Z—X
2 s

(4 is isomorphic to the inclusion of the generic point).

(v) Using the fact that | X| is noetherian and F' is constructible, we can find
finitely many points ., € X (1 £ a £ k) s.t. F — I,ia,i5F is injective, where
(Va)ia = iz, ([2], IX, prop. 2.14(ii)). Then (jii) shows that Claim 2 is reduced
to

CLAIM 3: Ifz € X and M is a torsion abelian group and F = iz, M, then p,’; is
bijective.

Proof of Claim 3: We recall that if Y is a normal integral scheme with generic
point n;»Y, then the strictly local rings of Y are domains ([8], VIII, th. 3(2)),
and this implies ([2], IX, lemma 2.14.1) ¢,S~S for any set S. In particular,
with the notations of (iv), we get .M = M so F = 7,j.M = 7.M. Define
Zo=Z xx Xo and let mg:Zg — Xg and i : Zg — Z be the projections. Since 7
is an integral morphism, we have ([2], VIIL, cor. 5.6) R, = 0 for ¢ > 0 and m,
commutes with base changes, so i*7. M=o, 1*M and

HY(Xg o1, 8" F)—HZ,(Xo, mo, M)~ H iy (Zo, M).
So Claim 3 is equivalent to
(#x) H(Z,M) = H\(Zo, M).
P

If ¢ = O then by (b) (extended to integral algebras by a limit argument) Zo

is connected, so p is M T;M ; therefore (xx) holds. Suppose ¢ > 0. Then by
1

j«M =M and RPj, =0 for p > 0 (as j. is exact), we get

H(Z, M) H({z}, M) = 0,
s0 (**) reduces to a case of

LemMA 1: If A is a normal domain having an algebraically closed field of frac-
tions, then for every closed subscheme Z C Spec(A) and a torsion abelian group
M we have

HI(Z,M)=0 Vg>0.
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(For ¢ = 1 we can replace “torsion abelian group” by “locally finite group”.)

3. Proof of Lemma 1

Let Y be the spectrum of Idem(Z), as a topological space. We have a continuous
map |Z| —f-»Y, defined by f~}(U.) = U, Ve € Idem(Z).

The fibers of f are the connected components of Z (this is a general fact for
topological spaces on which H? commutes with filtered lim, e.g., coherent spaces
(in the sense of toposes [2], VI) or compact Hausdorff sp_z;ces).

We claim that for any abelian sheaf F' on Z., we have

(3.1) HYZg,F)— T HY(f 1(9)e, F) is injective.
B yey

Proof of 3.1: We first remark that each f~!(y) has a unique closed subscheme
structure, and furthermore it is the lim of its closed and open neighbourhoods
U;. Hence by ([2], VII, cor. 5.8)

HYfHy)et, F)e—lim H (U; o, F).

Hence if ¢ € Ker(z) then V¥, £ vanishes on some closed and open neighbourhood
U, of f~(y). Finitely many such U; = Uy, (1 £ i £ n) suffice to cover Z. Then
Z is the disjoint union of the open subschemes U] = U; — U;; Uj, so from
E|U! =0V; we get £ =0.

(The proof can be reformulated using the Leray spectral sequence for the mor-
phism of sites Ze, — Y.)

LeEMMA 2: If Z = V(I) of Lemma 1 is connected, then
(A, 1) = @+ 4,0+ D7D

is a henselian pair.

Proof: We check condition (a). The localization by 1+ I ensures I’ C Rad(A4’).
Now if f,§,h are as in the statement of (a), then as A’ is also a normal do-
main with an algebraically closed field of fractions, f factorizes as IIZ_;(t — Ay)
(Aa € A).

So if n > 0 then G(A;)h(A1) = f(A1) = 0, but g(X;)A + k(M)A = (1), so
locally one of (A1), 2(}1) is a unit and the other is zero. By connectedness of
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Spec(A/I) this holds globally. Continuing, one obtains that for some partition
{1,2,...,N} = &, I &, we have

§ = t—Xs), h= t—Xa)-

g agm( a) agbg( a)

Define g, h by analogous formulas without bar.

Proof of Lemma 1 for ¢ = 1: (3.1) is used to reduce to the case that A/I is
connected, then Lemma 2 reduces to the case that (A, I) is henselian, in which
we use Remark 1(ii) and H (Spec(4),M) = 0.

Proof of Lemma 1 for ¢ > 1: We assume by induction that Lemma 1 holds for
q — 1, and we shall prove it for q.

Suppose £ € HL(Z,M). Every étale morphism V — Z extends locally to a
separated étale morphism V' = Spec(A). We recall :

LEMMA 3: (cf. [6], IV, prop. 18.10.8). If V—f+ Z is a separated étale morphism
with Z integral normal with generic point 1, then V' is isomorphic as a Z-scheme
to a disjoint union of open subschemes of the normalizations of Z in finite field
extensions of k(7).

(This follows from “Zariski’s main theorem” and the fact that Oy is integrally
closed in Oy ®0, k(n).)

In our case Lemma 3 implies that €’ is a local homeomorphism, so e is a local
homeomorphism, and we can think of V as a Zariski sheaf on Z. More precisely,
the étale site of Z is equivalent (as a category with topology) to the Zariski topos
of Z. From this one shows that the Zariski and étale sites of Z give equivalent
toposes, so HZ (Z,M) = H2(Z,M). In particular, ¢ is trivial locally for the
Zariski topology on Z, so the subset

S={seA|¢&z =0} [where Z,=2Z-V(s)]

satisfies A = A-S. We want to show that S is an ideal. (This will give S = A,
sol €8, ie, £ =0.) As S is easily seen to be closed under multiplication by
elements of A, it remains to show that if s,t € Sthen s+t € S.

We may assume s + ¢t # 0, so replacing A by A[1/(s + t)] we reduce to show
that if s +t € A* and €|z, = 0 and |z, =0, then £ = 0. Notice Z = Z, U Z;, so
we have a Mayer—Vietoris exact sequence (cf. [7], III, 2.24)

(3.2)
co = HYTHZ.0 20, M) - HY (2, M) — Hi(Z0, M) © HLHE(Z6 M) — -
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which gives £ € Im(6). But the term H971(Z, N Z;, M) vanishes by applying
(if s,t # 0) the induction hypothesis of Lemma 1 to the ring A[1/st] and the
pull-back of Z to its spectrum.

Query: Does Lemma 1 hold for any affine scheme Z s.t. any monic f € O(Z)[t]
of deg > 0 has a root?

Connectivity properties: Let A be an absolutely integrally closed domain, Z,
and Z; closed subsets of Spec(A), Z = Z; U Z;. The Z/n-torsors on Z which are
trivial on both Z; and Z; are classified by the cokernel of the restriction map

r:H%Z,,Z/n)® HY(Z;,Z/n) — H®(Zy N Z5,Z/n),

so by Lemma 1 r is surjective (for n # 0). This can fail for coefficients Z or Q.
In particular one gets the corollary that the intersection of two connected closed
subsets of Spec(A) is connected or empty (which occurred in more special cases
in Artin [1, §1]).

4. Remarks on non-abelian cases

4.1 A sheaf of groups G on a site S is called ind-finite iff Vn € N, G™ is equal to its
subsheaf (G™); consisting of the n-tuples of local sections of G which generate
locally a finite subgroup of G(U).* One checks that the formation of (G™);
commutes with applying ¢* for a morphism of topoii. Hence if (P; — S )is a
conservative family of points, then G is ind-finite iff all the stalks G p, are locally
finite.

If X is a scheme and C — X, is a stack (champ in the sense of [5], ch. II),
then C is called ind-finite (7[r5], ch. VII, 2.2.1) iff for every local section o € Cy
(= the category m~1(U)), the sheaf Aut(c) on U, is ind-finite.

4.2 Let (X, Xo) be an affine Hensel pair.

Remark 2: (i) p¥ is bijective for any sheaf of sets F on X;. (This strengthens
(c).)

(ii) p¥ is bijective for any ind-finite sheaf of groups F on X..
Proof: (i) Use condition (b) above and the implication (b) = (a) in
([2], XII, prop. 6.5 (i)).

* If S is topologically generated by its quasi-compact objects, the definition of
(2], IX, 1.5) can be used.
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(ii) Use Lemma 1.1 applied to finite A-algebras and the implication (b} = (a)
in {[2], XII, prop. 6.5(ii)).

Remark 2 can be strengthened to

THEOREM 1’: IfC is an ind-finite stack on X.., then the functor from cartesian
sections of C to cartesian sections of *C is an equivalence of categories.

Proof: This follows from Lemma 1.1 for finite A-algebras, Remark 2(i), and the
following:

ProPOSITION 1: If Xo — X is a closed immersion of coherent schemes, then
conditions (B) and (C) of ([5], VII, §2.2.11) imply condition (E) of (ibid.).

Proposition 1 is proved in (ibid.) in the noetherian case. It holds more gen-
erally for every morphism of coherent algebraic spaces, and can be proved by
extending to gerbes the techniques of ([2], IX, XII) for sheaves of groups.

Remark 3: (cf. [2], X1, 6.5(i)). The functor T of Theorem 1’ is fully faithful
for any stack C — X,; this follows by applying Remark 2(i) to the sheaves
Hom(o,7), where 0,7 are cartesian sections of C. Specializing to the case
C = (the stack of F-torsors), F' being any sheaf of groups on X, this gives
that pf" is injective.

5. Proper schemes

By the proper base change theorem ([2], XII, cor. 5.5), if O is a henselian local
ring with residue field k£ and Y is a proper O-scheme, then (Y,Y ® k) satisfies
the property of Theorem 1. Combining Theorems 1 and 1’ with the proper base
change theorem, we obtain:

COROLLARY 1: If (A,I) is a henselian pair, Y — Spec(A) a proper morphism,
and Yy = V(IOy), then (Y, Yo) satisfies the property of Theorems 1 and 1'.

Proof of Corollary 1: (i) For abelian cohomology: Consider the cartesian dia-
gram
Yo S Y
iy ol JVTI'
Spec(A/I) —__ Spec(A).
i
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If F is a torsion abelian sheaf on Y., and Fy = i*F, then we have a morphism
between the Leray spectral sequences:

E%% = HP(SpecA, Rim F) = HPYI(Y, F)

Iqu = H”(SpecA/I, Rqﬂ’o'Fo) = HP+q(Y0et, Fo)
By proper base change ([2], XII, 5.1) j*Rn,.F = Rimg, Fy, and RI7,F is a

torsion sheaf since RIm, commutes with filtered direct limits (using [2], VII, 3.3).
So by Theorem 1, E5? 5’E%?  and hence the morphism of abutements is an
isomorphism.

(i) For non-abelian cohomology: We use the operations f. and f* on stacks
([5], ch. II, 3) relative to a morphism f of toposes. If C - S is a functor and
s € Ob(S), C, denotes the category 7~1(s). If C — Yo is an ind-finite stack
then the functor Cy — (i*C)y, which is to be shown an equivalence of categories
identified with the composition

(mO)x = ("7L)xo 5 (70.7°C)x,-
0

“restriction”

The first arrow is an equivalence of categories by Theorem 1/, and the second
arrow is an equivalence since the base change morphism b : j*7,.C — 7w, t*C is
an equivalence (by proper base change for stacks ([5], VII, 2.2.2), in which the
noetherianity hypothesis can be omitted in view of Proposition 1).
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